n進法とは?

上野竜生です。n進法については定義をしっかり理解しておけば高校範囲では問題ないでしょう。出題頻度はそれほど高くなく,定義に戻って考える時間はあるでしょう。

n進法

スポンサーリンク

n進法の定義

n進法で\( a_k a_{k-1} \cdots a_1 a_0 . a_{-1} a_{-2} \cdots \)と表記される数は
\( a_k n^k+ a_{k-1}n^{k-1}+ a_1 n^1 + a_0 n^0+ a_{-1} n^{-1}+ a_{-2} n^{-2}+\cdots \)のことである。

具体例

10進法で「334」は3×102+3×101+4×100のこと。(10の0乗は1です)

2進法で「101」は1×22+0×21+1×20=4+1=5のこと。

2進法で「10.11」は1×21+1×2-1+1×2-2=2+0.5+0.25=2.75のこと。

基本的にはこの定義だけおさえればあとは普通の数学の知識で解けるでしょう。

以下例題です。

例題

3進法で表すと201となる数を4進法で表せ。

答えこの数は2×32+1=19なので,4進法では3ケタになる。

4進法でabcは16a+4b+cなのでa=1,b=0,c=3である。

よって103

なお,a=0,b=0,c=19やa=0,b=3,c=7などの解答は不正解です。n進法では各桁はn未満にする必要があります。
10進法では0~9まで,3進法では0,1,2のみ,4進法では0,1,2,3のみで数を表します。

例題2:次のうち10進法にしたとき有限の小数にならないのはどれか?
①5進法で 0.12
②5進法で 0.13
③6進法で 0.12
④6進法で 0.13
答え①\( \frac{1}{5}+\frac{2}{5^2}=\frac{7}{25}=0.28 \)
②\( \frac{1}{5}+\frac{3}{5^2}=\frac{8}{25}=0.32 \)
③\( \frac{1}{6}+\frac{2}{6^2}=\frac{8}{36}\)
=0.222222・・・
④\( \frac{1}{6}+\frac{3}{6^2}=\frac{9}{36}=0.25 \)より答えは③

例題3 次の計算は何進数のときに成立するか
21×23=1203
答えn進数とすると
21は(2n+1)
23は(2n+3)
1203は(n3+2n2+3)と書ける。よって\( (2n+1)(2n+3)=n^3+2n^2+3 \)\( 4n^2+8n+3=n^3+2n^2+3 \)
\( n^3-2n^2-8n=n(n+2)(n-4)=0 \)

n=0,-2,4

問題文の式に「3」があるのでn≧4であり,答えは4進数

数学はもちろん他の科目も勉強できる「スタディサプリ」なら人気講師の授業動画で、塾にいかなくてもまるで塾にいったかのような勉強ができます。塾と比較すると格安で、しかも無料おためしもできます。当サイトオススメのサイトです。


スタディサプリについて解説したページはこちら
スポンサーリンク

シェアする

  • このエントリーをはてなブックマークに追加

フォローする