当サイトは、PRを含む場合があります。
上野竜生です。円と直線の式が与えられていて(円と2点A,Bで交わる),弦ABの長さを求める問題の解き方を紹介します。
今回扱う例題
円(x-1)2+(y-2)2=2と直線y=3x-2は2点A,Bで交わる。弦ABの長さを求めよ。
このタイプの解法は2つあります。どちらも重要なので両方で解きましょう。
解法1 解と係数の関係・直線の傾きを利用
最もわかりやすいのではないでしょうか。直線の式を円の式に代入するとxの2次方程式になります。これの解はA,Bのx座標になります。以下では2次方程式の解をx=α,β(α<β)とします。
ここからA,Bのy座標を計算してもいいですが計算量を減らす工夫として直線の傾きmを利用します。そもそも傾きとは「xが1増加するごとにyがどれだけ増加するか」を表したものなのでA,Bのx座標の差がβ-αならばA,Bのy座標の差はm(β-α)となり,ここから求める弦の長さが三平方の定理から\( \sqrt{m^2+1}(\beta-\alpha)\)と求められるという発想です。
実際に計算してみます。β-αの計算は解と係数の関係でもいいですが,実際に解を求めるのに比べると遅くなるので実際に解を求めます。
答えy=3x-2を(x-1)2+(y-2)2=2に代入すると
(x-1)2+(3x-4)2=2
x2-2x+1+9x2-24x+16=2
10x2-26x+15=0
\( \displaystyle x=\frac{13\pm \sqrt{19}}{10} \)
よって2次方程式10x2-26x+15=0の2つの解をα,β(α<β)とすると
\( \displaystyle \beta-\alpha =\frac{\sqrt{19}}{5} \)
直線の傾きは3だからAとBのy座標の差は
\(\displaystyle 3(\beta-\alpha)=\frac{3\sqrt{19}}{5} \)
よってABの長さは
\(\displaystyle \sqrt{(\beta-\alpha)^2+3^2(\beta-\alpha)^2}=\sqrt{10}(\beta-\alpha)=\frac{\sqrt{190}}{5} \)
(x-1)2+(3x-4)2=2
x2-2x+1+9x2-24x+16=2
10x2-26x+15=0
\( \displaystyle x=\frac{13\pm \sqrt{19}}{10} \)
よって2次方程式10x2-26x+15=0の2つの解をα,β(α<β)とすると
\( \displaystyle \beta-\alpha =\frac{\sqrt{19}}{5} \)
直線の傾きは3だからAとBのy座標の差は
\(\displaystyle 3(\beta-\alpha)=\frac{3\sqrt{19}}{5} \)
よってABの長さは
\(\displaystyle \sqrt{(\beta-\alpha)^2+3^2(\beta-\alpha)^2}=\sqrt{10}(\beta-\alpha)=\frac{\sqrt{190}}{5} \)
広告
解法2 点と直線の距離と円の半径を利用
点と直線の距離と円の半径はすぐわかります。それがわかれば三平方の定理から弦の長さの半分がわかるのでそこから計算できます。なお,「点」とは円の中心のことであるとわかりますね。
答え円の中心は(1,2),半径は\( \sqrt{2} \)である。
点(1,2)と直線3x-y-2=0の距離は
\(\displaystyle \frac{|3\cdot 1 - 1\cdot 2 - 2|}{\sqrt{3^2+(-1)^2}}=\frac{1}{\sqrt{10}} \)
よって求める弦の長さは
\(\displaystyle 2\sqrt{\sqrt{2}^2 - \left(\frac{1}{\sqrt{10}}\right)^2} = 2\sqrt{\frac{19}{10}}=\frac{\sqrt{190}}{5} \)
点(1,2)と直線3x-y-2=0の距離は
\(\displaystyle \frac{|3\cdot 1 - 1\cdot 2 - 2|}{\sqrt{3^2+(-1)^2}}=\frac{1}{\sqrt{10}} \)
よって求める弦の長さは
\(\displaystyle 2\sqrt{\sqrt{2}^2 - \left(\frac{1}{\sqrt{10}}\right)^2} = 2\sqrt{\frac{19}{10}}=\frac{\sqrt{190}}{5} \)
どちらも図を書けばわかりやすくなりますね。点と直線の距離の公式は複雑ですが便利なのでこの機会に覚えておきましょう。
解説を読んで数学がわかった「つもり」になりましたか?数学は読んでいるうちはわかったつもりになりますが演習をこなさないと実力になりません。そのためには問題集で問題を解く練習も必要です。オススメの参考書を厳選しました
<高校数学>上野竜生です。数学のオススメ参考書などをよく聞かれますのでここにまとめておきます。基本的にはたくさん買うよりも…
上野竜生です。大学数学の参考書をまとめてみました。フーリエ解析以外は自分が使ったことある本から選びました。 大…
上野竜生です。当サイトでも少し前まで各ページで学習サイトをオススメしていましたが他にもオススメできるサイトはた…