問題 (★)
問132
[数学オリンピック]
\(\displaystyle \frac{10^n}{n^3+n^2+n+1} \)が整数となるような正の整数nをすべて求めよ。
答えがわかった方は下の解答フォームから応募してください。(コメント欄ではありません)
約2週間程度で締め切ります(締め切り :10/5 23:59予定)
正解者一覧
現在正解者0名
1 | さま | |
2 | ||
3 |
9月15日0時0分時点
解説を読んで数学がわかった「つもり」になりましたか?数学は読んでいるうちはわかったつもりになりますが演習をこなさないと実力になりません。そのためには問題集で問題を解く練習も必要です。オススメの参考書を厳選しました
<高校数学>上野竜生です。数学のオススメ参考書などをよく聞かれますのでここにまとめておきます。基本的にはたくさん買うよりも…
上野竜生です。大学数学の参考書をまとめてみました。フーリエ解析以外は自分が使ったことある本から選びました。 大…
上野竜生です。当サイトでも少し前まで各ページで学習サイトをオススメしていましたが他にもオススメできるサイトはた…